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Abstract

Quantum tensor networks in machine learning (QTNML) are envisioned to have
great potential to advance AI technologies. Recent works show that (quantum)
tensor networks provide powerful simulations of quantum machine learning al-
gorithms on classical computers. We observe that tensor, tensor networks and
quantum tensor networks in machine learning exhibit a layered architecture that
resembles an hourglass. In this paper, we describe a seven-layer architecture to
characterize the role of tensor, tensor networks and quantum tensor networks in
machine learning, point out current challenges and discuss recent innovations. As
a cornerstone data structure, tensor and tensor networks lie at the waist of the
hourglass-shaped architecture, while the lower and upper layers tend to see fre-
quent innovations. We expect tensor, tensor networks and quantum tensor networks
continue to serve as an amplifier for computational intelligence, a transformer for
machine learning innovations, and a propeller for AI industrialization.

1 Introduction

Why do conventional machine learning algorithms use vectors and matrices, while deep learning
algorithms and neural networks mostly rely on tensors? A simple and direct answer is that deep
learning usually involves hundreds, if not thousands, of features.

Quantum tensor networks [6] in machine learning (QTNML) are envisioned to have great potential to
advance AI technologies. Quantum machine learning [7] promises quantum advantages (potentially
exponential speedups in training, quadratic speedup in convergence, etc.) over classical machine
learning, while (quantum) tensor networks provide powerful simulations of quantum machine learning
algorithms on classical computers. QTNML is now a rapidly growing interdisciplinary area.

(Quantum) Tensor networks, a contracted network of factor tensors, have arisen independently
in several areas of science and engineering. Such networks appear in the description of physical
processes and an accompanying collection of numerical techniques have elevated the use of quantum
tensor networks into a variational model of machine learning. Underlying these algorithms is
the compression of high-dimensional data needed to represent quantum states of matter. These
compression techniques have recently proven ripe to apply to many traditional problems faced in deep
learning. (Quantum) Tensor networks have shown significant power in compactly representing deep
neural networks [56], and efficient training and theoretical understanding of deep neural networks.
More potential tensor network technologies are rapidly emerging, such as approximating probability
functions and probabilistic graphical models [68, 22]. A merger of (quantum) tensor network
algorithms with state-of-the-art approaches in deep learning is now taking place.
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Quantum algorithms are typically described by quantum circuits (quantum computational networks).
These networks are indeed a class of tensor networks, creating an evident interplay between classical
tensor network contraction algorithms and executing tensor contractions on quantum processors. The
modern field of quantum enhanced machine learning has started to utilize several tools from tensor
network theory to create new quantum models of machine learning and to better understand existing
ones.

The interplay between tensor networks, machine learning and quantum algorithms is rich. Indeed, this
interplay is based not just on numerical methods but on the equivalence of tensor networks to various
quantum circuits, rapidly developing algorithms from the mathematics and physics communities for
optimizing and transforming tensor networks, and connections to low-rank methods for learning. A
merger of tensor network algorithms with state-of-the-art approaches in deep learning is now taking
place. A new community on quantum tensor networks in machine learning (QTNML) is forming,
which this workshop aims to foster.

The three wagons (driving forces) for the success of machine learning are as follows

• Big data (represented as data structures of tensor and tensor networks): the past decade
witnesses an exponential explosion of sensory data due to the great advances in sensor
manufacturing, leading to the debate of “More is less? or More is more!" [5]. As a corner-
stone data structure, tensor and tensor networks are powerful in representing unstructured,
multi-modal data and are envisioned to have great potentials to promote the development
and deployment of machine learning technologies.

• Machine learning algorithms and models: Treating datasets as past experiences, algorithms
instruct machines on what they should do. Machine learning algorithms and models allow
computers to learn on their own. On the other hand, deep reinforcement learning algorithms
train themselves through interactions with an unknown environment.

• Intelligent computing. Faster computers can process more data and play a critical role
in future AI advancements. Deep learning [40] are computational models with multiple
processing layers that learn representations of data with multiple levels of abstraction. In
the post Moor’s law era [70], the rise of deep learning [40] can be largely credited to a new
paradigm Intelligent computing for computational intelligence! E.g., Google has designed
and built TPU (Tensor Processing Units) specifically for machine learning and claims to
be 15× faster than a GPU (graphics processing units), while IBM and Google are both
developing quantum computing systems.

We observe that tensor, tensor networks and quantum tensor networks in machine learning exhibit a
layered architecture that resembles an hourglass. Such an observation is analogy to the hourglass
structure [4] of the Internet protocol stack (known as TCP/IP) that successfully provides end-to-end
data communication by specifying how data should be packetized, addressed, transmitted, routed,
and received.

In this paper, we attempt to initiate a layered architecture for tensor and tensor networks, which will
benefit the development of machine learning theory, AI chip manufacturing, and AI applications.
This seven-layer architecture resembles an hourglass, namely, tensor, tensor networks and quantum
tensor networks lie at the waist while the lower and upper layers tend to see frequent innovations.
The bottom layer is the hardware, the highest layer is the AI applications and products. We point out
current challenges and discuss recent innovations.

We advocate intelligent computing of quantum tensor networks to achieve computational intelligence.
Quantum tensor networks provide a unified full-stack architecture to explore and fulfill the potential
of quantum machine learning and general artificial intelligence (AI) on both classical computer
and quantum computing platforms, which is envisioned to advance one-step ahead of the current
deep learning driven AI. Actually, there is plenty of room at the bottom [19], in the middle, and
at the top [41]. In the past, we have already saw 30× ∼ 100× speedups in basic operations and
300× ∼ 1, 000× speedups in multiple AI tasks, such as image and video processing/recognition,
autonomous driving, Internet of Things, gene data analysis, quantitative finance, etc.

Such an hourglass-shaped layer architecture enjoys disciplinary advantages, including layer-wise
standardization, intra-layer modularity and inter-layer separability. The layer-wise standardization
encourages an eco-system for machine learning research and industrialization. With the intra-layer
modularity, one can update a functional module without interfering other modules. The inter-layer
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separability means that the lower layer is transparent to the upper layer that calls the APIs provided
by the lower layer. We expect tensor and tensor networks continue to serve as an amplifier for
computational intelligence, a transformer for machine learning innovations, and a propeller for AI
industrialization.

We aim to promote discussions (by a series of workshops and academic events) among researchers
investigating innovative tensor network technologies from perspectives of fundamental theory and
algorithms, novel approaches in machine learning and deep neural networks, and various applications
in computer vision, biomedical image processing, natural language processing, and many other
related fields. In this survey, we also provide pointers to key references, hardware, software for
beginners.

The remainder of this paper is organized as follows. Section 2 describes the proposed hourglass
architecture. Section 3 discussed key challenges, recent innovations and broad impacts. We conclude
this paper in Section 4.

2 The Proposed Hourglass Architecture

We propose a seven-layer architecture for tensor, tensor networks and quantum tensor networks,
which resembles an hourglass. A take-home message would be: there is plenty of room at the bottom
[19], in the middle, and at the top [41].

2.1 Layer 1: X Processing Unit

In the post Moor’s law era [70], the rise of deep learning [40] can be largely credited to a new
paradigm Intelligent computing for computational intelligence! The impetus to AI computation is
made-for-AI processors, such as GPUs, FPGAs, ASICs (NPUs), quantum circuits/processors, etc.
We call them XPUs.

There is an emergence of dedicated AI accelerator using the ASIC (Application Specific Integrated
Circuit) technology, called NPU (neural processing unit). Of particular interest are tensor-based
NPUs, including Google TPU (tensor processing unit) [30], tensor cores in NVIDIA Volta/Turing
Architecture, Intel Nervana neural network processors (NNP), Tensor Computing Processor BM1684,
Alibaba Ali-NPU, Knupath Hermosa, Baidu XPU [58], the Huawei Ascend 910 using 32 DaVinci AI
cores [45], etc.

The computing power of quantum circuits/processors lies in an optimistic believe of “quantum
supremacy" [23], which is a key milestone when certain computational tasks might be executed
exponentially faster on a quantum computer than on a classical computer. A recent breakthrough
would be Google’s Sycamore processor with 53 qubits. Interested readers may refer to [2] for
principles of quantum computing and [1] for discussions of its limits.

Note that quantum circuits can be directly expressed as quantum tensor networks [54]. Quantum
tensor networks provides a unified framework where both classical and quantum computing share the
same theoretical and algorithmic developments, and the same model can be trained classically then
transferred to a quantum processor [26].

2.2 Layer 2: BLAS and Automatic Tensor Differentiation

To fully utilize the computing power of XPUs in Layer 1, BLAS (Basic Linear Algebra Subprograms,
or Basic Tensor Algebra Subroutines BTAS) and AutoDiff (Automatic differentiation) [59] are “a
knife and fork" to support effective implementation of machine learning models at the top.

Such BLAS standards are implemented and optimized in different programming languages. For
example, numpy in Python, cuBLAS in CUDA.

• BLAS level 1 (1969): “vector-vector";

• BLAS level 2 (1972): “matrix-vector";

• BLAS level 3 (1980): “ matrix-matrix";
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Figure 1: The hourglass architecture of tensor, tensor networks and quantum tensor networks in
machine learning.

• BLAS level 4 (Now?), “tensor-tensor": tensor operations include tensor (Kronecker) product,
Khatri-Rao product, Hadamard product, tensor contraction, t-product [34] or L-product [48],
etc.

Automatic differentiation is a technique to numerically evaluate the derivative of a function, which is
believed to be very powerful when combining the back-propagation algorithm. Interested readers
may refer to AutoDiff [59] and DDSP (differentiable digital signal processing) [16], etc.

Of particular interest is the automatic differentiation for tensors [39] and (quantum) tensor networks
[44]. Experimental results [39] show a speedup of up to two orders of magnitude over state-of-the-art
frameworks when evaluating higher order derivatives on CPUs and a speedup of about three orders of
magnitude on GPUs. H.-J. Liao et al [44] advocates that differential programming of tensor networks
open the door to many innovations and applications.

2.3 Layer 3: Tensor Data Structure

Tensor is the most popular data structure in machine learning, especially in deep learning. For
instance, a) input data: color image set, video sequence, MRI/fMRI, EEG, gene expression, traffic
data, social network data, knowledge graph; b) High-order statistical information, high-order moment,
covariance, cumulant, etc.; c) model parameters: fully connected layer, convolutional layer, multi-task
weight parameters, multi-modal feature fusion, and etc.; and d) function: probability mass function
of multiple discrete variables.

In the past, a unified notation set for tensors [35], tensor networks [10] and quantum tensor networks
[7][6] successfully helps the adoption of tensor tools and the development of tensor network libraries
in machine learning.

From a machine learning perspective, an N -th order1 tensor is a container that can house N -
dimensional data and associates with linear/multi-linear operations. A scalar is 0-dimensional, a
vector has a single dimension (1D), a matrix has two dimensions (2D), and a higher-order tensor has
more than two dimensions.

1In quantum physics, rank corresponds to order, while bond dimension corresponds to rank.
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From a spectral (or transform) perspective, tubal-scalars [34][33][48] are vectors with the multiplica-
tion operation defined according to the convolution theorem. Considering a graph transform, one can
have graph-tensors [53] or connected matrices [69], and graph tensor neural networks [50].

2.4 Layer 4: Tensor Decompositions, Tensor Networks and Quantum Tensor Networks

Many practically useful and efficient tensor models are built upon tensor decompositions, tensor
networks and quantum tensor networks.

Tensor Decompositions: Canonical Polyadic (CP) tensor decomposition, Tucker tensor decomposi-
tion, TT [57] or TR [77] tensor decomposition, HT, tSVD, reshuffling TD. Sparse tensor decomposi-
tion and nonnegative tensor decompositions are also developed as extensions of CP, Tucker, TT, TR
and HT.

The uniqueness of CP tensor decompositions [11] indicates that multilinear algebra may have
theoretical advantages over bilinear and linear algebra.

Other important applications includes tensor completion [67, 46]. tensor time series [63, 51], spectral
learning on matrix/tensor [27], and data privacy [36, 20, 18].

Tensor Networks and quantum tensor networks: TNs show advantages mostly in space complexity
reduction and computation efficiency. Tensor Networks have been employed to a) large-scale
optimization problems, large-scale eigenvalue problem, large-scale SVD, large-scale matrix pseudo-
inverse; b) model compression in DNN, including fully connected layer and convolutional layer; c)
expressive power analysis of DNN,

2.5 Layer 5: Tensor Libraries and Programming IDEs

Widely used tensor IDEs are TensorFlow [3], PyTorch [60], TensorRT [71], Theano, Keras, Apache
MXNet, Caffe2, CNTK, PaddlePaddle, MindSpore, MegEngine, etc.

Other libraries include TensorLayer [15], TensorLy [38]; Tensor decomposition in TensorFlow [55],
sparse tensor computing [61], and differentiating tensor networks library [44]

For quantum physics, iTensor (Intelligent Tensor) 2 provides a collection of optimized tensor network
algorithms. TensorTrace [17] is an application designed to facilitate the implementation of tensor
network algorithms and provides a drag-and-drop interface for building tensor networks.

Google’s TensorNetwork [62] is a library for both physics and machine learning, which is wrapper
for TensorFlow, JAX, PyTorch, and Numpy.

2.6 Layer 6: Machine Learning Algorithms and Models

There are active research on designing tensor-based machine learning models. We describe a few
approaches in the following.

TensorFace [72][73] presents facial image ensembles, where the relevant factors include different
faces, expressions, viewpoints, and illuminations. TensorMask [9] is proposed for dense object
segmentation.

Tensor regression [37] extends the conventional regression models to tensor representation, while
tensor mixture model [65] proposed a probabilistic graphic model in tensor form.

AutoEncoder can be extended to tensor form, such as tensor sparse coding [29].

The generative adversarial network framework is extended to tensor GAN [49] with application to
real-time indoor localization for smartphones.

In the model-based direction, tensor neural networks are proposed by unfolding tensor algorithms
into deep neural networks, e.g., [52][21] design fast decoders for snapshot compressive imaging
cameras, [50] considered recovery of nodes’ data matrices, and [76] investigated the video synthesis
problem.

2iTensor: https://itensor.org/index.html
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Many complicated TN models including DMRG, TTN, MERA, MERA 2D, PEPS, and etc, which
have widely applied to machine learning but may have potential advantages in particular problems.

2.7 Layer 7: Applications and Products

Many products embracing AI is enjoying a booming market, penetrating our daily lives: from
smartphones to self-driving cars and robotics, search engines, typing assistants (auto-completion), to
healthcare services.

Compressing and optimizing neural networks for inference at mobile devices: (i) TVM (tensor virtual
machine) [8]; (ii) the Tensor Algebra Compiler (taco) is a C++ library that computes tensor algebra
expressions on sparse and dense tensors. It uses novel compiler techniques to get performance
competitive with hand-optimized kernels in widely used libraries for both sparse tensor algebra and
sparse linear algebra.

AutoML and neural architecture search (NAS) are promising, where the training and inference
are performed at cloud servers. Many applications are now successfully deployed, including speech
recognition, visual object recognition, object detection; others: drug discovery and genomics. Note
that health-care is one of the hottest trends, while agriculture applications may have broad social
impacts, including automatic quality check, mineral delivery optimization in hydroponics. Disaster
recovery is also a critical application.

Big data analysis [66] for image, video; sensory data processing; EEG brain data; finance, genetics,
etc.

AI is now being applied massively in entertainment industry, such as chess and poker, medias (e.g.
Netflix), music industry (IBM Watson), and online games, etc.

Other AI products that benefits tensor network algorithms are listed as follows:

• reCAPTCHA is a CAPTCHA-like system designed to establish that a computer user is
human.

• SIRI is one of many voice assitants available today.

• Gmail recently introduced autocomplet tools.

• Plagiarism checking by searching for matches in billions of documents.

• FaceID is a feature recently intoduced by Apple for authentication on iPhone.

• Recommendation systems in Amazon and Alibaba Taobao that suggests users other products
based on their preferences and click history.

• Facebook face detection and tagging is a services of Facebook which automatically detects
faces in images and tags people from the user friendship set.

3 Challenges, Innovations and Broad Impacts

3.1 Challenges

The “4V+P" challenge of big data: IBM data scientists break big data into four dimensions [14]:
volume for scale of data, variety for different forms of data, velocity for analysis streaming data, and
veracity for uncertainty of data. We would like to advocate the privacy-preserving requirement as a
plus aspect of tensor learning algorithms. Furthermore, the data acquisition process is expensive in
terms of either time or budget.

The C3-challenges of machine learning algorithms are the intertwined computing, caching and
communication:

• Computing: Training a model requires substantial amount of time, which in turn slows down
the development. How do we speed up machine learning by 100×? Real-time operations
requires fast inference, e.g., cuTensor in NVIDIA CUDA.

• Caching: How to support Billion/Trillion-scale tensor computing? How to compress neural
network for mobile platforms?
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• Communication: the bandwidth between CPU and GPU, the link capacity of data centers,
the communication between cloud and edge servers.

Quantitatively characterizing the efficiency-accuracy tradeoff: how to select tensor network
models for different neural networks? How to tune the hyperparameters in the tensor network model?

Trustworthy AI: Explainability, interpretability, and understandable. Interpretability is about the
extent to which a cause and effect can be observed within a system. Explainability (for decision
making), meanwhile, is the extent to which the internal mechanics of a machine or deep learning
system can be explained in human terms.

Understanding neural-intelligence: a two-layer feedforward network [28] is analyzed using CP
tensor decomposition and such a network is believed to learn a mapping between data distribution
priors and labels. On the other hand, an elementary function of neural net’s intelligence is to recognize
symmetry structures in the data [64]: The glove for the left hand is able to fit the right hand if we
turn it inside out like placing an imaginary mirror near the opening. Analogously, neural networks
play a similar role as a glove when dealing with inputs of symmetry structures. The classic Kruskal
uniqueness theorem is exploited to provide a sufficient condition for the situations where such a
generalization capability will hold.

Tensor networks provide a rigorous approach to investigate Why deep is good? Nadav [12] considered
sum-product networks and CNN with ReLU activation functions [13]. Khrulkowv [32][31] took a
similar approach to analyze RNNs.

Robustness of Machine Learning Models: deep adversarial learning; The notion of differential
privacy is believed to be very powerful to construct ensemble methods that fuse sub-networks into a
more robust one [43].

3.2 Innovations

One recent trend regarding both AI software and hardware is to consider inference and training as
two separate different phases with different computational approaches. It is becoming standard to
develop specific chips for training and specific chips for inference.

Cross-layer Codesign. High performance tensor learning operations by exploiting the massive
parallelisms are important for both training and inference: 1). Tensor decompositions on GPUs/FPGA
such as cuTensor library [75][47][24][25] and swTensor [78]; 2). Tensor completion [74].

Federated learning [36] or Privacy-preserving tensor algorithms; homomorphic encryption meth-
ods for tensor decompositions.

Quantum Machine Learning [7]: tensor networks provide powerful simulations of quantum ma-
chine learning algorithms on classical computers, which may promise quantum advantages, such as
potentially exponential speedups in training, quadratic speedup in convergence, etc. [42]

Tensor network learning vs deep learning: TN has the power to express functions, will tensor
network learning be used as a general machine learning model like deep learning?

4 Conclusion

Tensor, tensor networks and quantum tensor networks are envisioned to have great potentials to
promote the development and deployment of machine learning technologies. In this paper, we have
proposed a seven-layer architecture to characterize the role of tensor and tensor networks in machine
learning, point out current challenges and discuss the development trends. Such a layered architecture
resembles an hourglass. As a cornerstone data structure, tensor and tensor networks lie at the waist of
the hourglass, while the lower and upper layers tend to see frequent innovations. We expect tensor
and tensor networks continue to serve as a transformer for machine learning innovations, an amplifier
for computational intelligence, and a propeller for AI industrialization.

The interplay between tensor networks and machine learning algorithms is rich. Indeed, this interplay
is based not just on numerical methods but on the equivalence of tensor networks to various arithmetic
circuits, rapidly developing algorithms from the mathematics and physics communities for optimizing
and transforming tensor networks, and connections to low-rank methods for learning. A merger of
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tensor network algorithms with state-of-the-art approaches in deep learning is now taking place. A
new community is forming, which this workshop aims to foster.
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